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Interferometry of non-Abelian edge excitations is a useful tool in topological quantum computing. In this
paper we present a theory of a non-Abelian edge-state interferometer in a three-dimensional topological
insulator brought in proximity to an s-wave superconductor. The non-Abelian edge excitations in this system
have the same statistics as in the previously studied 5/2 fractional quantum-Hall �FQH� effect and chiral
p-wave superconductors. There are however crucial differences between the setup we consider and these
systems, like the need for a converter between charged and neutral excitations and the neutrality of the
non-Abelian excitations. These differences manifest themselves in a temperature scaling exponent of −7 /4 for
the conductance instead of −3 /2 as in the 5/2 FQH effect.
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I. INTRODUCTION

One of the most promising tools in topological quantum
computing1,2 is non-Abelian edge-state interferometry.3–5 Its
main idea is that moving a fractional excitation �anyon� ex-
isting at an edge of a topological medium around localized
anyons in the bulk allows to extract information about the
state of the latter. The theory of edge-state interferometry
was initially developed for Ising anyons in the 5/2 fractional
quantum-Hall �FQH� state and p-wave superconductors,3–6

building on earlier work on FQH systems.7–10 Recent
experiments,11 which provide evidence for non-Abelian
braiding statistics in the 5/2 FQH state �see the detailed dis-
cussion in Ref. 12� are using this method, and it is generally
considered the most promising way to measure the state of
topological qubits.

We present a theory of non-Abelian edge-state interferom-
etry of the Majorana modes existing at the surface of a three-
dimensional �3D� topological insulator brought in contact
with an s-wave superconductor and a ferromagnetic
insulator.13 The main difference of an interferometry setup in
this system, as compared with 5/2 FQH interferometer, is the
need for an additional “Dirac to Majorana converter.”14,15

This element is required because unlike in the FQH effect the
edge excitations near a superconductor carry no charge and
thus allow no electric readout. This converter initially trans-
forms the charged excitations injected from a current source
into superpositions of two neutral excitations existing at dif-
ferent edges of the superconductor. Later another converter
recombines a pair of neutral excitations exiting the interfer-
ometer into a charged particle, either an electron or a hole,
that can be measured as a current pulse. The difference be-
tween the two systems is summarized in Fig. 1. The Dirac to
Majorana converter is not available in chiral p-wave super-
conductors since the chirality of the neutral edge modes is
then set by time-reversal symmetry breaking in the conden-
sate and not by the external region of the system �magnet�.
Such a limitation combined with the absence of charged
modes makes electric readout of interferometry experiments
much less viable in a chiral p-wave superconductor.

The description of the Dirac to Majorana converter using
single-particle formalism was done in Refs. 14 and 15. The

qualitative description of the non-Abelian Fabry-Perot inter-
ferometer was presented in Ref. 15. In this paper we use
conformal field theory �CFT� to describe and analyze the
non-Abelian excitations following Ref. 6.

An important difference between the systems is the fol-
lowing: in the 5/2 FQH effect the charge density and accord-
ingly charge current of anyons may be defined locally since
anyons have charge e /4 or e /2 in this system. Excitation of
charge e� has an energy cost of e�V for being created in the
system. This energy cost provides a natural cutoff for the
current whereas in the superconducting systems due to the
absence of charge in the edge excitations the only cutoff is
set by the finite temperature. The neutrality of the edge ex-
citations does not only mean that a finite voltage does not
provide a cutoff for the conductance but also results in a
different temperature scaling exponent of the conductance. In
the topological insulator setup the conductance diverges at
low temperatures as ��T−7/4 while in the FQH setup it goes
as ��T−3/2.

The experimental requirements for a realization of edge-
state interferometry in topological insulators were discussed
in Refs. 14 and 15. An additional requirement for non-
Abelian interferometry is the need for a sufficiently high am-
plitude of the vortex tunneling, ���exp�−�EC /EJ�, with EJ
the Josephson energy and EC the charging energy. It is non-
negligible only if the superconducting islands in the system
have small capacitive energy EC.16

The outline of this paper is as follows: in Sec. II we
introduce the effective model that we use to describe the
fermions that propagate along magnetic domain walls and
the superconducting-magnet domain walls. In particular, we
introduce the representation of these fermions in terms of
Majorana fields, which we use later. In Sec. III we review the
linear response formula that we use to calculate the nonlocal
conductance, the experimentally relevant quantity that we
are interested in. In Sec. IV we give a detailed account of the
perturbative calculation of the conductance and we consider
the most interesting case of vortex tunneling in Sec. V. In
Sec. VI we show how the proposed setup can be used to
measure the fermion parity �and hence the topological
charge� of the Majorana qubit that is stored in a pair of bulk
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vortices. Our conclusions are to be found in Sec. VII. We
provide a detailed description of the formalism that we use to
describe the peculiar vortex field in the appendices.

II. CHIRAL FERMIONS

A. Domain-wall fermions

It is known that there exists a single chiral fermion mode
on each mass domain wall in the two-dimensional �2D�
Dirac equation. This mode is localized near the domain wall
but is allowed to propagate along the domain wall in only
one direction �hence the name chiral�. This is most easily
seen using an index theorem that relates the difference in a

topological number �Ñ3 in the language of Ref. 17� between
the two domains and the difference in the number of right-
and left-moving states that live in the domain wall.17 In the
ferromagnetic domain wall that we are interested in the

change in Ñ3 across the domain wall is �1. If the domain
wall is also abrupt enough then only one chiral fermion ex-
ists in the domain wall.

A similar argument can be made using the Dirac-
Bogoliubov-de Gennes �BdG� equation with gaps generated
by the superconducting order parameter �. In the case that

we consider �s-wave pairing� Ñ3 is zero if the gap is domi-
nated by the superconducting gap ��� and nonzero ��1�

when the gap is of ferromagnetic character. Because of the
double counting of states in the BdG equation this implies
that 1

2 of a chiral fermion state exists on a superconducting-
magnetic domain wall. This is exactly the number of degrees
of freedom that is encoded in a chiral Majorana fermion
field.

Alternatively one can argue for the existence of these
states by solving the BdG equation explicitly for certain
simple domain-wall profiles or use k ·p theory.14 We now
proceed to a theoretical description of these states. In particu-
lar, we will see that it is fruitful to describe both kinds of
domain walls in terms of Majorana fields.

B. Theoretical description

In the leads �ferromagnetic domain walls�, where the su-
perconducting order parameter vanishes, the system consists
of a single normal edge state which propagates in only one
direction, i.e., a single chiral charged mode. This can be de-

scribed by a complex fermionic field �̂�x� with Hamiltonian

H�t� =
1

2	
� dx:�̂†�x��vpx − 
�x,t���̂�x�: . �1�

Here :: denotes normal ordering. We use units such that �
=1 unless specified otherwise. The kinetic energy operator
vpx is defined as

vpx = i
�x
� v�x� − v�x��x�

2
→ − i�v�x��x� �v�x� , �2�

where we have introduced the spatially varying velocity v�x�
in a symmetric way such that vpx is a Hermitian operator.
The stationary �energy E� solution to the time-dependent
Schrödinger equation corresponding to Eq. �1� for zero
chemical potential 
=0 is

�E�x,t� =�v�0�
v�x�

exp	iE
�
0

x dx�

v�x��
− t���E�0,0� . �3�

This implies that


�̂�x,t��̂†�0,0�� =
�v�x�v�0��−1/2

a + i
t − �
0

x

dx�/v�x��� , �4�

where a is a short-time cutoff which should be taken to zero.
If the velocity v is constant the result simplifies to

v
�̂�x,t��̂†�0,0�� =
1

a + i�t − x/v�
�

1

a + iu
. �5�

The normalization in Eq. �1� is chosen to yield this result
without any extra normalization factors. Note that it implies
�in the limit a→0+� that the anticommutation relation for the

field is ��̂�x� ,�̂†�x���=2	��x−x��.
An important consequence of the chiral nature of the ex-

citations is that the correlation functions only depend on the
difference of the Lorentz time u= t−x /v. According to Eq.
�4� the same is true also for a spatially varying velocity with

FIG. 1. Edge-state Fabry-Perot interferometer in the 5/2 FQH
system �top panel� and in a topological insulator/s-wave supercon-
ductor heterostructure �bottom panel�. The charge is transferred lo-
cally at the tunneling point in FQH effect and is only well defined in
the ferromagnetic domain walls �i.e., the leads� in the topological
insulator setup. Regions labeled S, M↑, and M↓ denote parts of
topological insulator in proximity of a superconductor and of ferro-
magnetic insulators with different polarizations. Gray circles in the
middle of the central island are Majorana bound states forming a
Majorana qubit, which can be measured by the interferometer.
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the proper interpretation of the length difference. Because of
this property we will mostly work with a spatially homoge-
neous velocity that we will set to unity �v=1� in the follow-
ing calculations. It is also useful to go from the Hamiltonian
to the corresponding Lagrangian

L =
1

2	
� dx:�̂†�x��i�t − vpx + 
�x,t���̂�x�: , �6�

since the coupling to the gauge field is most transparent in
this formalism.

C. Majorana fermion representation

We can decompose �̂�x� into two independent Majorana
fields 
�x�=
†�x� and 
�†�x�=
��x� as

�̂�x,t� =
eiA�x,t�

�2
�
�x,t� + i
��x,t�� . �7�

The anticommutation relations of the Majorana fields are
�
�x� ,
�x���= �
��x� ,
��x���=2	��x−x�� and
�
�x� ,
��x���=0. In terms of 
 and 
� the Lagrangian be-
comes

L =
1

4	
� dx�:
�x��i�t − vpx�
�x�:+ :
��x��i�t − vpx�
��x�:�

+
ie

2	
� dxF�x,t�v�x�
��x�
�x� , �8�

where F�x , t� depends on the phase A�x , t�, i.e., it is gauge
dependent

− eF�x,t� =

�x,t�
v�x�

−
1

v�x�
�tA�x,t� − �xA�x,t� . �9�

Note that this means that a time-independent spatially vary-
ing chemical potential can be gauged away up to possible
boundary terms.

One of the most interesting features of the system that we
consider is that the two Majorana fields that appear in this
action can becomes spatially separated when a superconduct-
ing region is sandwiched in between the two magnetic re-
gions in a magnetic domain wall as discussed previously.
Thus the action in Eq. �8� can be used to describe the setup
in Fig. 2, in which the two Majorana fields 
 and 
� are
spatially separated inside of the interferometer. It is impor-
tant to remember that the coordinate systems of the two
fields are different in this representation.

From the Lagrangian and the coupling to the gauge field
we now identify the charge current operator as

Ĵ�x� =
− ev�x�

2	
:�̂†�x��̂�x� ª

ie

2	
v�x�
��x�
�x� . �10�

This form of the current operator in terms of the Majorana
fields is very important for the following calculations. It is
only well defined if the two Majorana modes are at the same
position in space hence there is no coupling to the electric
field inside of the interferometer where the two Majorana
wires are spatially separated. This is also an important dif-

ference between the FQH setup where local charge current
operators can be defined at the tunneling point contacts. This
simplifies the calculation because the local charge transfer is
directly related to the measurements done far away. In our
system we do not have this luxury and must consider the
leads explicitly.

III. LINEAR RESPONSE FORMALISM FOR THE
CONDUCTANCE

If we write the Lagrangian in Eq. �8� as L=L0−H��t�,
where the term on the last line is

H��t� = −� dxĴ�x,t�F�x,t� , �11�

we are in the position to use the standard linear response
Kubo formula,18 to calculate the conductance tensor �. Fol-
lowing Ref. 19 we introduce an ac chemical potential local-
ized in the source lead, which we take to have coordinates
x�0. We choose a constant gauge A�x , t�=A so that F�x , t�
=−��−x�cos��t�e−��t�V /v�x�.20 The conductance � is defined
as the magnitude of the in-phase current divided by the ap-
plied voltage difference V. Following the usual steps, with
the current operator in Eq. �10� and assuming that the two
Majorana modes are independent, we obtain the formula

� =
e2

	h
lim

�,�→0+
�

0

�

dt��
0

�

dt Im�Gji
�Gj�i�

� �cos��t�e−�t.

�12�

Here we have reintroduced the correct units of conductance
e2 /h. We have also used the fact that in a chiral system the
response in the region x�0 to a spatially uniform extended
source x�0 at a particular time t�=0 is equivalent to the
response to a point source at x=0 that is on for t��0. The
important quantities to calculate are the Green’s functions

Gji
� � 

�y,t�
�0,t��� � 

 j
i� , �13a�

Gj�i�
� � 

��y�,t�
��0�,t��� � 

 j�

� 
i�
� � . �13b�

Here the indexes i and j are shorthands for the coordinates of
the source �0, t�� and current measurement �y , t�. Similarly
for the primed coordinate system, which is typically not the

FIG. 2. Free fermion propagation setup. The two Majorana
modes 
 and 
� are spatially separated by the superconducting
region. Thus the effective propagation length from in to out can be
different for the two modes, i.e., L��L.
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same in the setups that we consider as discussed previously.
Because the correlation functions only depends on t− t� it

is possible to perform the integral over t+ t� in Eq. �12� ex-
plicitly, the resulting expression is

� = −
e2

	h
�

0

�

dt Im�Gji
�Gj�i�

� �t , �14�

where it is understood that the source term is taken at t�=0.
Here we have also used the fact that the correct limit is to
take �→0+ first and then �→0. Because we are interested
in the finite temperature result the cutoff provided by the
thermal length is enough to render the expression conver-
gent. This is the master formula that we will use to calculate
the conductance in the following.

If both Majorana modes propagate freely �the setup is
sketched in Fig. 2� we can use the finite-temperature propa-
gator

Gj�i�
� =

1

zj�i�
�

	T

sin 	T�a + iuj�i��

=
a→0+

	��uj�i�� − iP 	T

sinh�	Tuj�i��
, �15�

where uj�i�= t−L�. The Green’s function of the other edge
Gji

� is given by the same expression with L �the effective
length of propagation� instead of L�. Substituting the expres-
sions for the Green’s functions into Eq. �14� we obtain

� =
e2

h

	T�L − L��
sinh�	T�L − L���

, �16�

in the limit a→0+. This formula agrees with the linear re-
sponse limit of the result obtained with the scattering formal-
ism in Ref. 14 and shows how the path difference enters in
the finite-temperature case.

To obtain the response in the source lead we take the limit
L�→L with the result that

� =
e2

h
. �17�

This is the expected �and correct� result for a system with
one propagating channel. If L��L we also obtain Eq. �17� as
long as T�L−L���1, in the zero-temperature limit the result
is thus independent of the path length difference. The Eq.
�17� agrees with the limit V→0 of the previous results,14,15

which were based on the scattering formalism.
This calculation explicitly demonstrates how the Dirac to

Majorana converter operates. The most intuitive way to un-
derstand it is to study the current operator in Eq. �10�. In the
usual �Dirac� picture it corresponds to the creation of an
electron-hole pair. It can also be interpreted as the creation of
a pair of Majorana excitations in the normal wire. When
these excitations approach the superconductor they become
spatially separated, as demonstrated in Fig. 2, but they can
only be measured by simultaneously annihilating them in the
drain lead.

In the following two sections we will keep one of the
Majorana wires as a “reference Majorana” that propagates
freely along one edge. The other “active Majorana” will have
to tunnel through the bulk to go to the drain and contribute to
the current. Tunneling can take place either as a fermion
�Sec. IV� or as a pair of vortices �Sec. V�.

IV. PERTURBATIVE FORMULATION

In tunneling problems we want to calculate the Green’s
function Gji

�= 

 j
i�, where 
i and 
 j live on different edges
of the sample, in the presence of a perturbation �H that
couples the two edges. Assuming that the system is in a
known state at time t0, we may express the expectation value
in the interaction picture as

Gji
� = 
U�t0,t�
 j�t�U�t,0�
i�0�U�0,t0�� . �18�

Here U�t , t�� is the time-evolution operator in the interaction
picture. For t� t� it is given by the familiar time-ordered
exponential U�t , t��=T exp�−i�t�

t ds�H�s��.
In the following we will assume that the average at t= t0 is

a thermal one at temperature T. A perturbative expansion is
obtained by expanding the time-ordered and anti-time-
ordered exponentials in this expression in powers of �H.
This procedure is equivalent to the Schwinger-Keldysh for-
malism, which in addition provides a scheme to keep track of
whether one is propagating forward or backward in time. We
will also assume that the perturbation was turned on in the
infinite past, i.e., we set t0=−�.

As a warmup for the vortex tunneling calculation we will
now consider the simpler case of fermion tunneling, which
we describe by a tunneling term H
�t1�= i�

2
1 / �2	�.6
Here 
1 �
2� is located at the tunneling point at the upper
�lower� edge. The system and the coordinate convention we
use are sketched in Fig. 3. The leading contribution to con-
ductance comes at first order in the tunneling amplitude �
.
After a straightforward expansion and collection of terms we
obtain

FIG. 3. Top panel: fermion tunneling setup. The coordinate con-
ventions used in Sec. IV are shown in the bottom panel.
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Gji
� =

�


2	
�

−�

t

dt1�
 j,
2�

1
i� −
�


2	
�

−�

0

dt1�
i,
1�

 j
2�

+ O��

2� . �19�

Here we have used the fact that the two groups of fermions
on different edges, i.e., �
 j ,
2� and �
i ,
1�, are independent.
It is straightforward to evaluate this expression using Eq.
�15� together with �
i ,
1�=2	��u1i�, and �
 j ,
2�
=2	��u2j�, where u1i= t1−Ltop and u2j = t1− t+Lbottom. Be-
cause of the geometry of the problem the second term on the
right-hand side of Eq. �19� vanishes due to causality �the
Lorentz time arguments never coincide�. The Green’s func-
tion Gji

� to leading order in tunneling strength is therefore

Gji
� = �


	T

sin 	T�a + i�t − L��
, �20�

where L=Ltop+Lbottom is the effective propagation length of
the Majorana fermion. Using the result of Sec. III we then
find that the conductance of this setup is

� = �


e2

h
, �21�

at T=0. Once again this result agrees with the zero fre-
quency, zero voltage limit of the results obtained with the
scattering method in previous work.14,15

V. VORTEX TUNNELING

The main focus of this paper is to study how the tunneling
of a pair of vortices can effectively transfer a fermion and
hence give a contribution to the conductance. Schematically
the vortex tunneling term can be written as

H� = ���b�x��t�x�� , �22�

where the index t �b� denotes the top �bottom� edge. As it
stands this term is not well defined without more information
about the two spin fields �, this is discussed in great detail in
Ref. 6. We provide a detailed description of the formalism
that we use to deal with this issue in the appendixes.

A. Coordinate conventions

To have a well-defined prescription for the commutation
relation of fields on different edges we will treat the two
edges as spatially separated parts of the same edge. This
reasoning has been employed in a number of works studying
tunneling in the FQH effect, see, for example, Refs. 21 and
22. This approach leaves a gauge ambiguity: should we
choose the bottom edge to have spatial coordinates smaller
or larger than that of the top edge? The correct choice is
fixed by noting that the current operator at the source should
commute with the vortex tunneling term at equal times be-
cause of the locality and gauge invariance. A similar argu-
ment can be made considering the current operator at the
measurement position before the information about the tun-
neling event has had time to reach it. Since we want the
vortex tunneling event to commute with fermions on the ref-

erence edge at all times we are forced to use the coordinate
convention shown in Fig. 4 in which the spatial coordinates
on bottom edge are always larger than those on top edge.23

The vortex tunneling then corresponds to changing the phase
of the superconducting order parameter by �2	 to the right
of the tunneling point in the figure.

In addition it is convenient to introduce an even more
compact notation. We denote 
t�0,−Lt��
i, 
b�t ,�L+Lb�
�
 j, �t�t1 ,−xt���1, �b�t1 ,�L+xb���2, �t�t2 ,xt���3, and
�b�t2 ,�L−xb���4. The two tunneling terms in the Hamil-
tonian are then written as ��T12 and ��T34. The modification
needed to allow for different tunneling amplitudes ��L and
��R at the left and right tunneling points �see Fig. 1� is
straightforward. The “Lorentz times” u for right movers are
u� t−x. We use additional shorthand notations u���u�

−u� and s���sign�u�−u��. The Lorentz times of the six
operators used in the calculation are

ui = Lt,

u1 = t1 + xt,

u3 = t2 − xt,

uj = t − Lb − �L ,

u2 = t1 − xb − �L ,

u4 = t2 + xb − �L . �23�

Taking the limit of large spatial separation �L→+� we see
that sij =1. Accordingly, in this limit also skl=1 for any k
� �i ,1 ,3� and l� �j ,2 ,4�.

In the following perturbative treatment we will assume
that t2� t1. This means that to calculate the full Green’s func-
tion Gji

� we should sum over the four processes for which the
first and the second vortex tunneling events happen at the
right or the left tunneling point. The amplitudes of the two
processes in which vortex tunneling events occur at different
points are related by changing xt→−xt and xb→−xb. Like-
wise the amplitudes of the processes in which both evens

FIG. 4. Top panel: independent coordinate system for the two
edges. Bottom panel: coordinate system in which the two edges are
treated as spatially separated parts of the same edge. This allows us
to correctly capture the commutation relations of the fields on dif-
ferent edges in the relevant limit �L→�.
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occur at the same tunneling point can be obtained from the
amplitude of the process with vortex tunneling at different
points by setting xt=xb=0 and setting Lt→Lt�xt and Lb
→Lb�xb.

B. Perturbative calculation of G�

In the appendices we demonstrate how one can evaluate
the averages of the contributions to the integrands generated
in the perturbative expansion of Gji

�. The technically simplest
way of performing the calculation is to use the commutation
relation between fermions and tunneling terms �see Eq. �B8��

T12
3 = s13s23
3T12, �24�

to transform the correlation functions into one of the two
forms in Eq. �B9�. The limit of large spatial separation �L
→� can then be taken using Eq. �B10�. Finally we use the
functional form of the correlation function of a 
 and two
�’s that is fixed by conformal invariance24


�1�3
i� =
z13

3/8

�2z1i
1/2z3i

1/2 . �25�

The result of this calculation is the same as the limit �L
→� of the full six-point function that can also be calculated
using bosonization and a doubling trick, see Appendix A.

The first nonvanishing contribution to the fermion propa-
gator G� comes at second order in the vortex tunneling term.
It is then convenient to divide the intermediate time integrals
into different regions. We will use the following labeling
conventions: �a� t1� t2�0, �b� t1�0� t2� t, and �c� 0� t1
� t2� t. We now calculate the contribution to the integrand
from each region separately.

Let us first consider the interval t1� t2�0. By straightfor-
ward expansion and using the exchange algebra we obtain
the integrand in this region

I�a� = 

 j
iT34T12� + 
T12T34
 j
i� − 
T34
 j
iT12�

− 
T12
 j
iT34� = si1si2�si3si4 − s3js4j�

 jT34T12
i�

− s1js2j�si3si4 − s3js4j�

 jT12T34
i� . �26�

The minus signs are generated when the two tunneling terms
are on different Keldysh branches, i.e., when one comes
from evolving forward in time and one backward. We can
simplify this expression further by noting that because of the
geometry we always have si3=si1=1 in this region. Thus

I�a� � I� = �1 + sj4��

 jT34T12
i� + sj2

 jT12T34
i�� .

�27�

Let us now consider the interval t1�0� t2� t. We denote
the contribution to the integrand in this region by I�b�. Ex-
panding we get

I�b� = 
T12T34
 j
i� + 

 jT34
iT12� − 
T12
 jT34
i�

− 
T34
 j
iT12� = . . . = I�. �28�

To see that we get the same expression as in region �a� we
have used the fact that si1=1 in this region. Performing the
same calculation as in regions �a� and �b� for the interval 0
� t1� t2� t we find that also in this region

I�c� = I�, �29�

and hence we can use I� throughout all regions. Using clus-
ter decomposition �i.e., taking the limit of spatial separation�
and the explicit correlation functions we get the expression
for the integrand. Putting back the integrals and the strength
of the tunneling term we obtain the leading term in the per-
turbative expansion of the Green’s function

G� =
��

2

23/2�
−�

t

dt1�
t1

t

dt2
�1 + sj4�

��zj2��zj4��1/2�z3iz1i�1/2

���1 + sj2�Re�z31
3/8z42

3/8� − �1 − sj2�Im�z31
3/8z42

3/8�� . �30�

Note that this expression is a short form that includes a sum
of many terms, it is valid for real times only and the analytic
structure of the Green’s function is not apparent. It is useful
to shift the time coordinates tj = t−Lb−xb−sj for j=1,2. The
resulting expression is

G� =
��

2

�2
�

0

�

ds1�
0

s1

ds2
1

��zj2��zj4��1/2�z3iz1i�1/2

���1 + sj2�Re�z31
3/8z42

3/8� − �1 − sj2�Im�z31
3/8z42

3/8�� , �31�

where

uj2 = 2xb + s1,

uj4 = s2,

u1i = t̃ + xt − xb − s1,

u3i = t̃ − xt − xb − s2,

u31 = s1 − s2 − 2xt,

u42 = s1 − s2 + 2xb,

t̃ = t − Lt − Lb. �32�

Note that the dependence on the parameters t, Lt, and Lb only
enters in the combination t̃. The analytic structure is much
more transparent in this equation. For tunneling at the same
point, i.e., xt=xb=0, we always have sj2=1 and the result
simplifies to

Gxb=xt=0
� = ��

2�2 cos	3	

8
��

0

�

ds1�
0

s1

ds2

�
�z31�3/4

��zj2��zj4��1/2�z3iz1i�1/2 . �33�

From this expression we see that Re�G���0 only for times
such that t�Lt+Lb. Since Re�G�� is proportional to the re-
tarded Green’s function GR, this is a reflection of the causal-
ity of the theory: information has to have time to propagate
through the system for GR to be nonzero.

The Green’s function G� has a singular part that is given
by
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G� � ��
2T−3/4�− i log��� + 	����� , �34�

with ��x� the Heaviside step function and

� = T�t − Lt − Lb − xt − xb� � 1. �35�

C. Conductance

Substituting the propagator in Eq. �15� for the reference
edge into the expression for conductance in Eq. �14� we ob-
tain

�

e2/h
= − L� Im�G��t=L� + �

0

�

dtP Tt

sinh�	Tuj�i��
Re�G�� .

�36�

Together with Eq. �31� this expression provides a closed ex-
pression determining the contribution from each process to
the conductance, which may be directly evaluated numeri-
cally. Since G� only has a logarithmic divergence, the short-
distance cutoff a may be directly set to zero in this expres-
sion. By substituting the singular part of G� into Eq. �36�
one can see that the conductance contribution is a continuous
function of all the parameters of the problem. It may be
written as

�LR =
e2

h

��
2F�xtT,xbT,�Lt + Lb�T,L�T�

T7/4 �37�

with F a universal continuous function. In the low tempera-
ture limit, when all of the arguments of F are small, the
contributions to conductance from vortex tunneling at differ-
ent points �LL, �RR, �LR, and �RL are all equal to each other
and to

�0 =
e2

h

��
2F�0,0,0,0�

T7/4 , �38�

with F�0,0 ,0 ,0��1.7. In the other limit, when either �xt
+xb�T�1 or �Lt+Lb−L��T�1 the function F is exponentially
small, or in other words conductance is suppressed due
to thermal averaging. We have evaluated the conductance of
a single point contact due to vortex tunneling numerically
with the result shown in Fig. 5. At low temperatures
��T7/4→constant as expected and at high temperatures
��exp�−T�L�−Lt−Lb��.

The scaling exponent of conductance −7 /4 is different
from −3 /2, the exponent of tunneling conductance in the 5/2
FQH effect. This naturally follows from the very different
mechanisms of conduction in the two systems: current is
carried by charged modes in 5/2 FQH system while Dirac to
Majorana converter forms current in topological insulators.
This difference is reflected in the existence of a charge op-
erator for each edge in the quantum-Hall setup that allows
the definition of a current operator that measures the current
that flows between the two edges.8 This current operator is
defined locally at the tunneling point contact and can be used
directly in the perturbative calculation of the current. In the
FQH setup the leading contribution therefore involves a four-
point function of the �’s. In the topological insulator setup
the processes that contribute to the current correlations have
to transfer a 
 between the two edges, which means that the
six-point function of four �’s and two 
’s gives the leading
contribution. Bare vortex tunneling given by the four-point
function of �’s does not transfer Majorana fermions and is
therefore irrelevant for the current in the topological insula-
tor setup.

VI. QUASICLASSICAL APPROACH AND FERMION
PARITY MEASUREMENT

The most interesting application of the interferometer
setup with vortex tunneling is that it allows for the detection
of the fermion parity of the superconducting island between
the two point contacts.3–5 This is possible because vortices
acquire a phase of 	 when they are moved around an odd
number of fermions.25 In the simplest case, when there are
only two bulk vortices in the central region, as shown in Fig.
1, the interferometric signal reads out the state of the qubit
formed by the bulk vortices.

Without loss of generality we consider the case of two
bulk vortices that are situated in between the left and the
right tunneling regions. From the point of view of the elec-
tronic excitations the bulk vortices can be described by two
localized Majorana bound states13 with corresponding opera-
tors �a and �b. To describe the action of the vortex tunneling
term on these excitations we include, following Ref. 26, an

extra term P̂ab= i�a�b in the left tunneling operator. This op-
erator captures the property that upon changing the phase of
the order parameter in the superconductor by �2	 the Ma-
jorana modes localized in the vortex cores gains a minus
sign.

In the absence of bulk-edge coupling the fermion parity of
the vortex pair is a good quantum number that does not
change with time. In that case the extra term that is added to

the left tunneling term P̂ab measures the fermion parity of the
qubit defined by �a and �b. This means that we can replace

P̂ab→ �−1�nf, where nf is the number of fermions in the two
vortices. In the second-order calculation this factor enters
only in the contributions where one vortex tunnels at the left
tunneling point and one at the right so the total conductance
is equal to

� = �LL + �RR + �− 1�nf��LR + �RL� . �39�

The expressions for the �’s were calculated in the previous
section. The effect of bulk-edge coupling is presumably simi-

0 1 2 3 4
0.0

0.5

1.0

1.5

ΠTL'

F
�0

,0
,�

L
t�

L
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�T

,L
' T
�

FIG. 5. Normalized conductance F�0,0 , �Lt+Lb�T ,L�T�
��h /e2��T7/4 /��

2 of a single quantum point contact due to vortex
tunneling as a function of temperature. The parameters of the setup
are Lt=Lb=L�.
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lar to the case of the 5/2 FQH effect that has been studied in
great detail recently.26–29

The phenomenological picture of the non-Abelian inter-
ferometry presented in Ref. 15 can be summarized in the
following way. First an incoming electron is split into two
Majorana fermions when it approaches the superconductor.
Next one of these Majorana fermions is further split into two
edge vortices, or � excitations. The edge vortices tunnel at
either of the two point contacts and recombine into a Majo-
rana fermion again. Finally two Majorana fermions combine
into electron or a hole as they leave the superconductor. At
zero voltage any dynamic phases are prohibited by electron-
hole symmetry so the outgoing current may be written as

I =
e2

h
V��̃�L

2 + �̃�R
2 + 2�− 1�nf�̃�L�̃�R� , �40�

where �̃�a �with a=L ,R� is an effective vortex tunneling
amplitude �here we allow for different vortex tunneling am-
plitudes at the left and right tunneling points�.

Comparing Eqs. �38� and �39� with Eq. �40� we see that at
low temperatures the effective vortex tunneling amplitude is
equal to

�̃�a = ��aT−7/8�F�0,0,0,0� . �41�

Once this identification is done, the quasiclassical picture is
directly applicable given that 1 /T is much larger than the
characteristic length of the system and the second-order per-

turbation theory still holds ��̃�a�1�.

VII. CONCLUSIONS

In this paper we have introduced a theory for a non-
Abelian interferometer on the surface state of a 3D topologi-
cal insulator brought in proximity to an s-wave supercon-
ductor. This theory uses CFT to describe the vortex field
following Ref. 6 and is an extension of the earlier qualitative
discussion in Ref. 15. In particular, we showed that if the
temperature is low and tunneling is sufficiently weak, it is
possible to introduce an effective tunneling amplitude of vor-
tices according to Eq. �41�. This justifies the simple quasi-
classical description of vortex tunneling used in Ref. 15.

Because the vortex tunneling term is a relevant operator,
the perturbative treatment is only valid at high-enough tem-
peratures. This statement is reflected in the divergence of
conductance ��T−7/4. The scaling exponent −7 /4 is differ-
ent from the tunneling conductance scaling exponent −3 /2 of
the 5/2 FQH setup in the linear response regime due to the
different structure of current operators in the two systems.

ACKNOWLEDGMENTS

We acknowledge useful discussion with C. W. J. Beenak-
ker, C.-Y. Hou, and B. J. Overbosch. This research was sup-
ported by the Dutch Science Foundation NWO/FOM. J.N.
thanks the Swedish research council �vetenskapsrådet� for
funding in the final stage of this project.

APPENDIX A: VORTEX TUNNELING TERM

In this appendix we show how one can calculate the am-
plitude for transferring a fermion between the two edges in
terms of two vortex tunneling events using bosonization with
the help of a doubling trick. This is an old technique that
goes back to 1970s,30 which is now textbook material.24,31 In
the appendices we use the condensed coordinate conventions
introduced in Sec. V A but we will keep the gauge choice
implied by the sign of sij unspecified.

1. Nonchiral extension of the system

The logic of the procedure can be motivated as follows
�see also the construction in Ref. 26�. We are interested in the
tunneling of a chiral Majorana fermion between two edges of
a sample �cf. Fig. 4�. Because of the fermion doubling fea-
ture it is convenient to enlarge the system by adding an ad-
ditional counterpropagating chiral Majorana fermion. These
two copies can then be described as the continuum limit of a
lattice model of local Majorana fermions �described by lat-
tice operators �l

†=�l� that are allowed to hop to their nearest
neighbors

H = − t�
l=1

2N

i�l�l+1. �A1�

The fermion parity operator is then P̂��l=1
2N ei	/4�l. This sys-

tem is known to map onto the �quantum� Ising chain in a
transverse field at criticality �see, e.g., Ref. 31�, which is also
equivalent to the classical 2D Ising model at its critical point.
In the Ising model there are spin and disorder fields that are
nonlocal in terms of the lattice fermions. It is easy to write
down explicit expressions for the spin and disorder operators
in terms of a string of Majorana fermions on the lattice, for
example,

�2i+1�2j+1 = �
l=2i+1

2j

ei	/4�l, �A2a�


2i
2j = �
l=2i

2j−1

ei	/4�l, �A2b�

�2i+1
2j = e−i	/4 �
l=2i+1

2j−1

ei	/4�l. �A2c�

It is clear from these expressions that a �
 term changes the
fermion parity of the system whereas �� and 

 do not.

Now we are not interested in the lattice theory itself but
rather the low-energy theory which is obtained in the con-
tinuum limit of the lattice model. This limit is known to map
onto the Ising CFT. This is a thoroughly studied system and
we can hence rely on results from the large literature on this
topic.

In particular, on the lattice we know that a vortex tunnel-
ing term has to be of the form �1�2 or 
1
2, otherwise the
fermion parity is changed. Furthermore, from the operator
product expansion of the Ising CFT �Refs. 24 and 32�
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�1�2 �
1

�z12z̄12�1/8 +
1

2
�z12z̄12�3/8i
2
̄2, �A3a�


1
2 �
1

�z12z̄12�1/8 −
1

2
�z12z̄12�3/8i
2
̄2, �A3b�

we see that a pair of �’s �or a pair of 
’s� can change the
parity of right movers. Since our tunneling term is not al-
lowed to do this we take the tunneling term in the nonchiral

system to be T̃12��1�2+
1
2. Clearly the parity-changing
term is canceled with this choice. Another way of putting this
is to say that this combination enforces the tunneling term to
be in the identity channel.

It is known that two independent copies of the Ising
model can be bosonized using Abelian bosonization.24,30 It is
then a straightforward calculation �using, for example, the
explicit expressions in the appendix of Ref. 32� to show that
the doubled tunneling term can be bosonized as

T̃12T̃12� = cos	�1 − �2

2
�cos	 �̄1 − �̄2

2
� . �A4�

It is important to note that the primed system is an indepen-
dent copy of the system in this expression and that it is
introduced as a trick to allow for a simple calculation of
various correlation functions.

2. From nonchiral back to chiral

Since we are only interested in the right-moving part of
the tunneling term we would like to get rid of the left-
moving part in the last equation. Because of the factorization
of the right- and left-moving parts we are allowed to use

T12T12� = cos	�1 − �2

2
� , �A5�

as the doubled tunneling term in the chiral system. Here the
cosines are to be understood as shorthands for cos�a−b�
= �eiae−ib+e−iaeib� /2. The exponentials in these expressions
are actually dimensionful vertex operators, see, e.g., Ref. 33
for a detailed discussion. With this representation together
with the bosonized representation of the Majorana fermion in
the unprimed system


i = �2 cos��i� , �A6�

and the standard bosonization formula �which holds if
�i=1

N �i=0, otherwise the expectation value vanishes�


ei�1�1ei�2�2
¯ ei�N�N� = �

1�i�j�N

zij
�i�j , �A7�

with

zij =
sin�	T�a + iuij��

	T
, �A8�

we can, in principle, calculate any correlation function using
the bosonization formalism. In particular, we can calculate
the full six-point function including two 
’s and two tunnel-
ing terms. This will be done in the next section but let us first

check that the representation reproduces known results for
the two-, three-, and four-point functions.

Let us first consider the vortex two-point function. This is
calculated via


T12�2 = 
T12T12� � =
1

z12
1/4 . �A9�

Taking the square root we obtain the correct result for a field
with dimension 1

16


T12� =
1

z12
1/8 . �A10�

Similarly the fermion two-point function is 

i
 j�=zij
−1. The

vortex four-point function can be computed from


T12T34�2 =
1

2

	 z13z24

z12z23z34z14
�1/4

+ 	 z14z23

z13z24z12z34
�1/4� .

�A11�

Taking the square root of this expression we get the known
correlation function of four �’s for which �1 and �2 fuse to
the identity.34,35 Now we use the conventions from the main
part of the paper and take the limit �L→�. In this case only
one of the terms in Eq. �A11� survives and


T12T34� =
�L→�

1
�2

	 z14z23

z13z24z12z34
�1/8

. �A12�

We also have



iT12� = 0, �A13�

which is consistent with the notion that the tunneling of a
vortex cannot create a fermion �or equivalently change the
fermion parity�. It is also straightforward to show that



i
 jT12� =
�L→�

0, �A14�

which means that a single vortex tunneling event is not
enough to be able to transfer a fermion between the two
edges.

3. Six-point function

To calculate the contribution from a tunneling of two vor-
tices we need the six-point function of two 
’s and four �’s.
This correlation function is a special case of the more general
one that was first calculated in Ref. 36 with a similar method.
To calculate the six-point function we use
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i
 jT12T34�
T12� T34� � = 2�cos��i�cos�� j�cos	�1 − �2

2
�cos	�3 − �4

2
��

=
1

4zij�z12z34�1/4�
	 zi1zi3zj2zj4

zi2zi4zj1zj3
�1/2

+ �i ↔ j��	 z13z24

z14z23
�1/4

+ 
	 zi1zi4zj2zj3

zi2zi3zj1zj4
�1/2

+ �i ↔ j��	 z14z23

z13z24
�1/4� .

�A15�

Dividing this with the square root of Eq. �A11� the result agrees with that of Ref. 36. We now take the limit of spatial
separation �L→�, the only one term that remains is



i
 jT12T34�
T12� T34� � =
�L→�

�z13z24�1/4

4�zi1zi3zj2zj4�1/2
�zi2zi4zj1zj3�1/2

zij�z12z34z14z23�1/4 . �A16�

Combining this with Eq. �A12� we find



i
 jT12T34� =
�z13z24�3/8

23/2�zi1zi3zj2zj4�1/2
�zi2zi4zj1zj3�1/2

zij�z14z23�1/2 ,

�A17�

To get this result we have removed the phases associated
with z12

−1/8 and z34
−1/8. These phases are canceled when one

makes sure that the tunneling term is described by a Hermit-
ian term in the Hamiltonian. This is exactly the phase of

T12� in Eq. �A10�.

Other orderings of the fermions and the tunneling terms
are obtained by exchanging the indexes, for example,



iT12
 jT34� =
�z13z24�3/8

23/2�zi1zi3z2jzj4�1/2
�zi2zi4z1jzj3�1/2

zij�z14z23�1/2 .

�A18�

The indexes on the z’s should have the same order as they
appear in the original expression. This prescription was used
in, e.g., Ref. 27 and is equivalent to the Keldysh formalism
for chiral bosons which is reviewed in e.g., Refs. 22 and 37.
In the limit of spatial separation the last term gives a phase
factor that depends on the order of the tunneling terms and
the fermions according to

ei�p = − isij�1, p = ij1234, 1234ij, 12ij34

− 1, p = i1234j

isij , p = i12j34, 12i34j .
� �A19�

APPENDIX B: EXCHANGE ALGEBRA

An alternative formalism is provided by the exchange al-
gebra of Ref. 38. In this formalism the action of the spin field
is described by two types of operators a and b and their
conjugates. a creates an excitation with dimension 1

16 when
acting on the vacuum, which is denoted by the shorthand
a�0�= � 1

16�. The conjugate a† interpolates in the opposite di-
rection: a†� 1

16�= �0�. Similarly b and b† interpolates between
states of dimensions 1

16 and 1
2 according to b� 1

16�= � 1
2 � and

b†� 1
2 �= � 1

16�. The exchange algebra is described by the follow-
ing relations:

	a1a2
†

b1
†b2

� =
eis12	/8

�2
	 1 e−is12	/2

e−is12	/2 1
�	a2a1

†

b2
†b1

� , �B1�

a1
†a2 = e−is12	/8a2

†a1, �B2a�

b1b2
† = e−is12	/8b2b1

†, �B2b�

b1a2 = e−is12	/8eis12	/2b2a1, �B2c�

a1
†b2

† = e−is12	/8eis12	/2a2
†b1

†. �B2d�

The tunneling operator, e.g., T12, consists of a product of two
�’s in the identity channel, which we denote ��1�2�I. When
acting on states with dimension 0 or 1

2 this implies that we
are allowed to use the representations

��1�2�I → �a1
†a2, �0� → �0�

b1b2
†, �1

2
�→ �1

2
�� . �B3�

Another important point is that the tunneling term should be
represented by a Hermitian term in the Hamiltonian. This can
be achieved by explicitly adding the Hermitian conjugate in
the definition of the tunneling term

T12 � ��1�2 + �2�1�I = ��1 + e−is12	/8���2�1�I

�1 + eis12	/8���1�2�I
� . �B4�

In the last step we used Eqs. �B1� and �B3�. By adjusting the
amplitude to conform with the result of the previous section
�see discussion below Eq. �A17�� we define

T12 = e−is12	/16��2�1�I = eis12	/16��1�2�I, �B5�

which is Hermitian.
Similarly we can represent the fermion field in terms of

a’s and b’s with coinciding arguments39
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1 � �b1a1, �0� → �1

2
�

a1
†b1

†, �1

2
�→ �0�� . �B6�

Using Eqs. �B3� and �B6� together with the exchange algebra
of Eqs. �B1� and �B2� it is straightforward to show that in all
cases we have the following commutation relations:

��1�2�I
3 = s13s23
3��1�2�I, �B7�

which immediately implies the commutation relation be-
tween a tunneling term and a fermion is

T12
3 = s13s23
3T12. �B8�

With this very important relation we can always transform
the correlation functions that we want to calculate �see Sec.
V B� into one of two different forms



 jT12T34
i� , �B9a�



 jT34T12
i� . �B9b�

Using the exchange algebra we can cluster decompose the
last two expressions, in the limit of spatial separation we are
left with



 jT12T34
i� =
�L→�

e−is12	/2

�2


 jb2a4�
a1

†b3
†
i� , �B10a�



 jT34T12
i� =
�L→�

e−is12	/2

�2


 jb4a2�
a3

†b1
†
i� . �B10b�

We have checked that the result of the formalism in this
appendix gives identical results to those of the formalism in
Appendix A. Although the exchange algebra is derived at
T=0 it also holds at finite temperatures.
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